Anthropometric measures in prediction of cardiovascular disease, a comparison of laboratory-based versus non-laboratory-based model: the Rotterdam Study

Klodian Dhana¹ (k.dhana@erasmusmc.nl), M. Arfan Ikram¹,²,³, Albert Hofman¹, Oscar H. Franco¹, Maryam Kavousi¹

¹ Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
² Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
³ Department of Radiology, Erasmus MC, Rotterdam, the Netherlands

Purpose

We aim to compare two risk prediction models:

1. Laboratory-based model, which required blood testing.
2. Non-laboratory-based model, which required only history and physical examination measures.

First, we examined different anthropometric measures in association with cardiovascular disease (CVD). Secondly, we constructed a non-laboratory-based model by substituting total and HDL cholesterol with the most informative anthropometric measure associated with CVD.

Methods

The study included 4,755 participants aged 55-79 years from the prospective population-based Rotterdam Study. We used Cox proportional hazards regression models to estimate the association of anthropometric measures and CVD. We studied the following anthropometric measures:

- Body shape index (ABSI)*
- Body mass index (BMI)
- Waist circumference (WC)
- Waist-to-hip ratio (WHR)
- Combined BMI and WC

For anthropometric measures that were significantly associated with CVD in multivariable adjusted models, we further assessed the "informativeness". The predictive performance of the two models was assessed by studying:

- Discrimination, Calibration, and Agreement.
- Multivariable adjusted models, we further assessed the "informativeness".

Conclusions

In our population-based study of middle-aged and elderly adults where the ability of BMI to predict CVD might decline, the non-laboratory-based model, based on ABSI, could predict the risk of CVD as accurately as the laboratory-based model among men. We do not support use of BMI instead of lipid measures in risk prediction models in the middle-aged and elderly adults but give further support to simplify the risk prediction models by substituting lipid levels with ABSI.

Results

Multivariable adjusted hazard ratios for association of anthropometric measures with CVD are presented in Table 1.

The model containing ABSI (χ^2ABSI = 7.9 (p=0.005)) was more informative than the model including BMI and WC together (χ^2 BMI/WC = 6.9 (p = 0.031)) in men.

We constructed a non-laboratory-based model in men by replacing total and HDL cholesterol levels with ABSI.

Among women, none of the anthropometric measures were significantly associated with incident CVD, therefore we didn’t proceed with a non-laboratory model in women.

The average 10-year predicted risks of CVD were 16.6% by the laboratory-based model and 16.4% by the non-laboratory-based model, with ABSI.

The Spearman rank correlation for the risk predictions based on the laboratory and the non-laboratory-based models was 0.90 (p < 0.001).

Table 1. Multivariate HR (95% CI) for 10-year risk of CVD

<table>
<thead>
<tr>
<th>Measures</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSI</td>
<td>1.19 (1.05-1.34)</td>
<td>1.09 (0.97-1.22)</td>
</tr>
<tr>
<td>BMI</td>
<td>0.99 (0.88-1.12)</td>
<td>0.96 (0.85-1.09)</td>
</tr>
<tr>
<td>WC</td>
<td>1.09 (0.96-1.23)</td>
<td>1.02 (0.90-1.16)</td>
</tr>
<tr>
<td>WHR</td>
<td>1.11 (0.99-1.26)</td>
<td>1.09 (0.97-1.23)</td>
</tr>
<tr>
<td>BMIWC*</td>
<td>0.77 (0.62-0.97)</td>
<td>0.87 (0.72-1.06)</td>
</tr>
<tr>
<td>WC</td>
<td>1.34 (1.08-1.67)</td>
<td>1.13 (0.91-1.37)</td>
</tr>
</tbody>
</table>

* BMI and WC are combined i.e. added simultaneously in the multivariable model.

Figure 1. Agreement in risk prediction for CVD

Conflict of interest

Funding

Nothing to declare

Klodian Dhana is supported by Erasmus Mundus Western Balkans (ERAWEB), a project funded by the European Commission and received additional funding from Vereniging Traditie Erasmus Universiteit Rotterdam. Maryam Kavousi is supported by the AXA Research Fund. Oscar H. Franco works in ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA.